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Abstract-This paper proposes a physically consistent definition of material damage. The definition
is based on the physical concepts of inter-atomic energy and the breaking and re-establishing of the
atomic bonds. The states of material damage are physically determined in a broad sense by the
configuration of the atomic bonds. The meso characteristics, such as vacancies, dislocations, pores,
slips, microcavities, microcracks and so on, could be quantified through the use of subsystems each
corresponding to a special configuration. The constitutive equations, referring to the material
damage represented by the definition, could be developed by following both nonlocal and local
theories.

I. INTRODUCTION

It has been recognized in practice that the failure of most engineering components or
structures follows a process of time and environment dependent damage. In the last few
decades, researchers have been trying to develop theories and analytical models to elucidate
the process quantitatively. These theories and models involve the use of different scale
parameters to describe a wide range of physical characteristics including micro, meso and
macro behaviors, and can be divided into nonlocal (strong or weak nonlocal) and local
theories [see Kroner (1963, 1968) and Kunin (1975, 1982, 1983)].

For strong nonlocality or spatial dispersion, the corresponding theory compares physi­
cal wavelength with the scale parameter. In this case, the scale parameter may refer to a
distance between particles in discrete structures or to grain size. It means that the physical
and geometrical nature of the solid microstructure in the order of crystal lattice, vacancies
or dislocations could be considered by the model. However because of the large number of
such quantities involved in a solid, it is difficult to develop a closed-form mathematical
solution. The statistical method, such as that used by quantum mechanics and statistical
mechanics, should therefore be employed.

To reduce the difficulty in developing an analytical model and at the same time to
retain partly the effects ofnonlocality, a weakly nonlocal model in which the scale parameter
is small in comparison with the wavelength of the solid considered could be suitable. It is
an approximate model in comparison with the strong nonlocal model, for which integral
and finite-difference operators are replaced by differential operators with small parameters
attached to their highest derivatives. Several theories, such as multipolar, asymmetric,
micromorphic and couple-stress theory [~ee e.g. Truesdell and Toupin (1960), Edelen et al.
(1971), and Eringen (1978)] belong to this type, although they are usually constructed on
a purely phenomenological basis.

By considering a sufficiently long wavelength (zeroth longwave approximation), the
nonlocal model could be translated to a local theory, in which there are no scale parameters
involved. It means that all characteristics of microstructure and mesostructure are smeared
by an averaged or homogenized process. The property of locality, i.e. the possibility of
considering "infinitesimally small" elements of the medium is inherent in all the classical
theories of the continuum mechanics and macro continuum damage mechanics [see
Lemaitre (1987, 1992) and Chaboche (l988a, b)]. The transition from nonlocality to locality
has made an enormous simplification in the mathematical analysis, leaving relatively simple
mathematical expressions.

For practical purposes, one is interested in developing some theories with simple
mathematical expressions, but having a certain degree of power to reflect the effects of
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nonlocality. To do so, a possible approach is to bridge the physical concepts and math­
ematical expressions between the nonlocal and local theories. The difficulty in mathematical
manipulation involving discrete media to be described by discrete functions could be
overcome by introducing, for example, a concept of "quasicontinuum" [see Kunin (1983)].
In essence it is an interpolation of functions of discrete argument by a special class of
analytical functions in such a way that the condition of one-to-one correspondence between
quasicontinuum and the discrete medium is fulfilled. The example for the physical sim­
plification is made by the so-called effective field theories, such as self-consisent theory.
From the theory, the cells (slip plane, defect or crack, etc.) represented by scale parameters
are considered to be embedded in isolation into a homogeneous medium which in some
appropriately smeared sense reflects the influence of adjacent cells. These theories enable
discrete and continuous media to be described within the scope of a unified formalism and
to be generalized correctly in such concepts of continuum mechanics as strain and stress.
However, when damage as an internal variable is introduced into the constitutive theory
of material, confusion arises from the lack of a physically and geometrically consisent
representation of damage. Accordingly, it is important to establish a physically and geome­
trically acceptable definition of damage, which is the purpose of this paper.

For a possible extension to all the scale parameters interested, it is obvious that the
representation of damage should be related to a physical cell as small as possible, such as
the size of an atom. In this paper, the bonds referring to the interaction of atoms as
characteristic physical cells will be used to represent the material damage. As a preliminary
study, it is appropriate to confine our attention to some simple situations. These simple
situations include both the solid with simple microstructure and the damage with the
simplest mathematical description, i.e. scalar.

2. BASIC CONCEPTS AND DEFINITION OF MATERIAL DAMAGE

By the 1920s, it was recognized that materials are much weaker than their theoretical
strength calculated from a perfect crystalline material. It means that a certain degree of
damage had existed before mechanically and environmentally induced damage. Therefore,
it is reasonable to describe damage by considering the atomic structure of a solid.

According to the theory of quantum mechanics, atoms in condensed phases occupy
equilibrium positions and are vibrating about the valley of the inter-atomic energy curve
(see Fig. 1). When external work is applied, the atoms are displaced from their equilibrium
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Fig. I. (a) The configuration ofatoms and bonds in a simple crystalline structure; (b) the interatomic
energy versus distance between two atoms.
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position and so the potential energy of the system is changed. If external work is generated
by stress and the resulting deformation is elastic, the potential energy of the system is stored
in a reversible manner. On the removal of the stress, the atoms move back to their
equilibrium position, and the increase of the potential energy of the system is released.
Superimposed on this reversible process is the time-dependent, thermally activated irre­
versible process. Under these conditions, the atoms overcome their energy barriers causing
the breaking of the previous bonds and re-establishing new configuration of bonds, and
move into a new equilibrium valley of free energy. In other words, irreversible micro­
structural alteration or damage occurred. It is this fundamental and general fact that the
process of damage in crystalline materials and in polymers should be considered as a
chemical reaction in which the composition remains constant but the bond structure of
atoms changes. Accordingly, the thermodynamic theory of irreversible processes is suitable
for the description ofdamage process as long as the internal variable D is defined rationally.

2.1. System including n single atomic bonds
Consider atoms moving in the "configuration space" as shown in Fig. 1, the bond

between two atoms of a real material could be determined by an axial vector

(1)

with bi(O) = 0, in which L~ is the characteristic direction vector and !:J.Gs denotes the single
inter-atomic energy. bi(!:J.G S

) indicates that the intensity of cohesion between two atoms is
dependent on the inter-atomic energy, i.e. the physical and microstructural characteristics
of the material and bi(O) = °means that the ith bond has ceased to cohere two atoms.

With relation to bi(!:J.GS), the damage could be described in two ways: One is to take
bi(!:J.GS) in comparison with bi(!:J.G~) as a measure of damage, in which !:J.G~ denotes the
inter-atomic energy of the perfect materials, and another is to take the number of the broken
bonds, i.e. the number of bonds with bi(O) = 0, as a measure of damage. For the former,
damage is based on the concept of inter-atomic energy which is characteristic of micro­
structure. In this case, the ideal or perfect state to be represented by bi(!:J.G~) could be taken
as the reference background (no damage). Consequently, the scalar measure ofsolid damage
D for the system including n atomic bonds is defined as the difference between the weighting
sum of the inter-atomic energy of an ideal material and that of a practical one (non­
dimensional over the weighting sum of the inter-atomic energy of an ideal material), i.e.

n n

I (bi(!:J.G~) - bi(!:J.GS))N I bi(!:J.GS)L~ . N
D = i~ 1 = 1- _i~_l _

n n

I bi(!:J.G~)N I bi(!:J.G~)L~ . N
i= I i= I

(2)

where the weighting function is the scalar product of the unit direction vector L~ of each
bond and the unit normal vector N of the plane considered. Through the weighting function,
the influence of the orientations of bonds on damage could be included. This definition
might be useful in the qualitative or quantitative analysis of the damage ofmaterials induced
by the metallurgical or synthetic processes.

Another way, which may be more suitable for the description of mechanical damage,
is to consider, as the measurement of material damage, whether the bond is broken or not.
For this case, the scalar measurement of damage D in the plane of the material cell with
unit normal vector N is defined as

n

L s(bi(!:J.GS))L~· N
D = _i=_I _

n

IL~·N
i= I

(3)

in which n denotes the number of bonds through the plane considered and the selection
function
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{
1,

sW(AG'» =
0,

when h'(AG')

otherwise
(i 1,2, ... , n), (4)

acts as a selector separating the broken bonds from the complete ones. Lb' N is the
projection of the direction vector of bond along the normal direction of the plane considered,
and acted as the variable of orientation of bonds on damage. If the characteristic area of the
ith bond, defined as the area to be taken by a projection of the effective space of an atomic
bond occupied in the system configuration space onto a plane with normal vector Lb, is
denoted as :ji, the projective area of ,9 i onto the plane with unit normal vector N is
19 i L[, . N (see Fig. 2). Accordingly, the total area A of n atomic bonds crossing the plane is

A = L 9iU,' N.
j ~-c 1

If taking [}. = mean(9i
) = <9 i

), (i = 1,2, ... ,n), then

1/

A = ,9 L L[, 'N.
i=~ I

(5)

(6)

From eqn (6), the meaning of Lb' N is obvious.
The material damage defined by eqns (2) and (3) is based on a purely physical point of

view. Almost no additional assumptions are attached to this definition. In addition, there
exists no direct interaction among the atomic bonds as they are spatially separated in the
solid. However, since a solid contains atomic masses of the order of 1024 per em" the
damage cannot be described by the usual analytical modeling through the consideration of
the individual bond one by one. If the process of averaging in the statistical sense is adopted,
the meso characteristics of the materials involved in the influences ofvacancies, dislocations,
pores, slips, microcavities, microcracks and so on will be buried completely. To avoid this,
it is advisable to group the bonds according to their meso characteristics and then to consider
these groups of bonds instead of considering the total bonds one by one. To do so, let us
consider every group as a subsystem. The configuration of the system will be composed of
the total configurations of the subsystems.
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Fig. 2. (a) The characteristic area of bonds; (b) the projective area of [ji on to the plane with unit
norma! vector N.
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2.2. System including m subsystems
Depending on the scale used, the subsystem could be generated in a number of ways.

For example:

(a) by grouping together the bonds which are adjacent to each other and with same
inter-atomic energy as a subsystem;

(b) by grouping together the bonds which are adjacent to each other and with same
orientation as a subsystem;

(c) by grouping together the bonds with the same inter-atomic energy but distributed
randomly in the whole system as a subsystem.

To sum up, for every subsystem there is a unique meso characteristic of solid. Damage
in a cell in the plane of the material could be described by a system configuration composed
of the configurations of these subsystems with bonds crossing through the plane. However,
for practical considerations, the subsystem should be set up in a plane band with the
characteristic thickness, say 2t, rather than in a rigorous plane with zero thickness. Accord­
ingly, m subsystems describing the meso characteristics of material in a plane cell with
thickness 2t are determined by m vectorial functions

(7)

where Xis a characteristic variable relating to the location ofsubsystems in the configuration
space of system, L~ is the characteristic unit direction vector of the subsystem and L1Cg

denotes the free energy of the subsystem considered, from which the intensity of energy
barrier is determined. When a subsystem is composed of a group of bonds to represent a
part of the grain boundary of a polycrystalline solid, the energy barrier signifies the
resistance to be overcome by the external work and L~ is the unit normal vector of the grain
plane. If a subsystem is grouped by the special bonds with L1Gs = °to present a microcrack,
L1Gg is equal to zero and L~ denotes the unit normal vector of the microcrack plane.

Corresponding to the definition described in Section 2.1, the damage in the plane
considered is defined as

n

LL~oN
i= 1

and

m m

L (gi(L1G~, X) _gi(L1Gg, X»N L gi(L1Gg, X)L~ 0 N
D = i= 1 = 1- _i=_I _

m m

L gi(dq, X)N L gi(dG~, X)L~ 0 N
i=1 i=1

m m

L s(gi(dGg, X»L~ 0 N L s(gi(dGg, X»L~ 0 N
D = _i=_I = _i=_I _

m

L g;(X)L~ oN
i= 1

(8)

(9)

in which m denotes the number of subsystems in the plane cell with unit normal vector N
and thickness 2t. The selection function is defined as

. {g; (X), when dGg = o}
s(g'(dGg,X»= 0, otherwise ,(i=1,2, ... ,m), (10)

in which g; (X) is a function of location which could be set to one regardless of location.

3. PROPERTIES OF THE PROPOSED DEFINITION

The material damage defined by eqns (2) and (8) is based on the physical concept of
the inter-atomic energy ofatomic bonds, which is characteristic ofmicrostructures ofsolids.
The ideal or perfect crystalline structure with active energy (or bond energy) dG~ is taken

$AS 30,15·1
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as the reference point for the quantitative representation of material damage. It means that
a certain degree of damage exists in all practical solids. The main advantage for doing so
is that the damage caused by the metallurgical or synthetic processes of material could be
represented quantitatively. As b'(li.G~) is always equal to or larger than H(Mi') and h'(li.G')
is equal to or larger than zero for all i, the damage defined by eqns (2) and (8) always has
a value between zero and one.

The damage defined by eqns (3) may be more suitable for the representation of material
damage caused by the external loading and/or environments. The meso characteristics
involving slip plane, microcavities, microcracks and so on could be conveniently described
through the introduction of the concept of a subsystem expounded mathematically by eqn
(9). It is obvious that the damage defined by eqns (3) and (9) also has a value between zero
and one because some positive terms in the sum of numerators of these equations are
omitted by the selection functions.

According to the proposed definition, the state of damage is determined only by the
state of atomic bonds of the system considered. Any changes in the microstructures of the
solid will contribute a certain ingredient to damage. It is not simply confining damage as
the impairment of the stress transmitting capacity, although the impairment is possible as
a result of the presence of microcracks resulting in some changes in microstruct ures. Damage
as a change of internal structures of material should have a much wider meaning in physics.
Any inelastic phenomena with or without reduction in material stiffness or strain softening
could be described in a broad sense by the proposed definition.

In addition to its rigorous physical foundation which is an important factor for most of
the damage theories, the definition could also provide a scheme to establish a geometrically
consistent representation for different scale parameters. The scheme is based upon a sub­
system model in the system configuration space of atomic bonds. Several simple examples
are shown in the following three sections.

4. MICROMECHANICS OF MATERIAL DAMAGE

Consider a solid in which the nucleation and growth of microcracks is the only mode
of irreversible changes in the microstructure. The solid was modeled by an arbitrary
distribution of flat planar microcracks with the concentration being dilute enough to
not create any significant overlap of projections. It assumes that these microcracks are
surrounded by some homogenized effective medium which in some appropriately smeared
sense reflects the influence of adjacent microcracks. The nonlinear responses of this solid
have been studied quite well [see Krajcinovic (1985), Krajcinovic and Sumarac (1987) and
Krajcinovic (1987)].

First, consider an elementary volume with a plane cell of area A to be crossed by n
atomic bonds defined by eqn (I) as a system, which is large enough to contain a sufficient
number of microcracks and still small enough to be mapped onto a material point. This
system is composed by m + I subsystems. Among m + I subsystems. m are represented by

(i = 1, 2, ... ,m l. (II)

where ni denotes the number of bonds for the ith subsystem crossing the plane with the
unit normal vector L~. Obviously, the area of the ith microcrack to be represented by the
ith subsystem is, in view of eqn (6),

III

~i = 9 L Li' q, (i = 1,2, ... , m).
i= 1

The (m + 1)th subsystem is represented by

(12)
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According to eqn (9), damage can be described by
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(13)

m

I S(gi(L\Gg, x»L~ 0 N
D = _i~_l _

n

IL;oN
i= I

m

I tL~oN
i~ \

A
(14)

If L~ = Lp for i = 1 to m, are parallel (i.e. system of parallel microcracks) and intro­
ducing the concepts of the "averaging variables" proposed by Krajcinovic (1985), the field
of m parallel microcracks could be grouped by k axial vectors wjLg (j = 1, 2, ... , k).
Moreover, if the half characteristic thickness t equals the characteristic length I used by
Krajcinovic (1985), then eqn (14) becomes

A
(15)

in which ~j is the sum of microcrack areas within the band (-I, I) corresponding to ~.

This representation is the same as the one proposed by Krajcinovic (1985) and could be
extended to a general microcrack field.

5. MACRO PHENOMENOLOGICAL THEORY

The macro phenomenological theory, alluring in its simplicity, is primarily focused on
the macro events, i.e. average value in the statistical sense. Theoretically, in view of thermo­
dynamics with internal variable method, the observed macro nonequilibrium state could
be sufficiently well approximated by a constrained state of thermodynamic equilibrium
corresponding to the current values of a finite set of internal variables [see Kestin and Rice
(1970), Rice (1971), and Kestin and Bataille (1978)].

After introducing a macro damage variable D, as an internal variable, Damage Mech­
anics (DM) could be used to describe the effects of irreversible microstructural alterations
on macroscopic mechanical properties of solids such as stiffness and strength. Since the
pioneering works by Kachanov (1958) and Rabotnov (1963), the theory ofDM has been
quickly developed and evolved as a practical tool to model the damage processes of
engineering material and structures at a macroscopic continuum level.

However, it seems that a physically and geometrically consistent definition of material
damage has not appeared yet. Some confusions are found in the constitutive equations of
the materials and a host of substantially different methods dealing with the same phenom­
enon have been spawned [see Krajcinovic (1984) and Rabier (1989)]. To enable the proposed
physically consistent definition to be used as a macro internal variable to represent material
damage, a system of atomic bonds composed of only one subsystem is taken to define the
damage variable. Of course, the system will contain a full elementary volume which is
defined as a material point in DM.

Considering a plane cell, with unit normal vector N, crossing the elementary volume
and assuming the characteristic area 3 i is the same for all n bonds crossing through the
plane. From eqn (3), damage is defined as
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n

2: s(bi (8G'»Lh' N
D = i.~l

2: L;" N
:~ I

[} L s(H(8G S»Li,' N
i= 1

A
(16)

where A is the overall cross-sectional area of the element considered and S(b'(8G'» is
defined in eqn (4). If Adenotes the effective area to support the external load after damage
caused by the presence of microcracks and microcavities, in view of eqn (6), then

Accordingly,

n

A = A --.9 2: s(b'(.'1G'»Lh'N.
j-,-" [

A-A .4
D = --- = 1-

A A

(17)

(18)

It is the same as the original definition proposed by Kachanov (1958). For the definition
with more complex mathematical forms, a further analysis associated with the damage
kinetic laws can be found in Li and Woo (1993a).

6. DAMAGE BY CRACKS WITH EXPLICIT GEOMETRY AND LOCATION

When the geometry and location of one or more cracks in a solid is explicitly
represented, the damage of the solid may be determined by the growth of these cracks. In
this case, some mathematical formulations have been developed to provide the rigorous
basis for the practical measurements of the characteristic values which represent the overall,
general characteristic fracture resistance of a specific solid. A simple example is the linear
elastic fracture mechanics (LEFM), from which cracks are assumed to be surrounded by a
field in a homogeneous linear elastic isotropic solid. For the special case, it has been proved
that there exists the so-called stress singularity at the crack tip and a complex stress field
adjacent to the crack tip even under a very simple loading condition. Accordingly, a local
characteristic parameter, stress intensity factor K, is introduced to describe the complex
stress field near to the crack tip and then the constitutive equation of fracture kinetic is
established. More practical models have been developed by assuming that the crack is
surrounded by an elastic-plastic, plastic or viscoplastic material.

Relating to the characteristic size of macrocracks and microcracks to fit in with the
theories developed by fracture mechanics (FM) and DM, the relation between them may
be considered as a question of scale. However, if taking the fact that almost all characteristic
parameters adoped by FM, such as K and J, are developed by classical theories ofcontinuous
medium, on may find that the question of scale in FM does only refer to the medium
surrounded by the crack. In other words, the question of scale should not be determined
by the size of cracks considered, but the medium surrounding the cracks. In fact, both FM
and macro continuum damage mechanics are based on the local theory. There are two main
distinctions between DM and FM:

(1) For DM, an internal variable to describe the damage of solids is introduced into
the constitutive equation based on the classical mechanics of continuous media.

(2) For FM, the special geometrical boundary conditions with a sharp crack have
been considered, but this is not necessary in DM.

A possible example referring to the question of scale for a solid with explicit geometry
and location may be contributed by Chudnovsky and his colleagues [see Chudnovsky
(1984), Chudnovsky et al. (1987a, b), and Chudnovsky and Wu (1990)]. A modified stress
intensity factor is obtained by considering a macrocrack surrounded by a special microcrack
field.
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Since a macrocrack is only treated as a special geometric boundary problem, the scale
parameters will be independent of the size of the crack. Accordingly, the damaged field
associated with the cracked region could be represented by our proposed definition.

7. THEORETICAL AND PRACTICAL SIGNIFICANCE OF THE PROPOSED DEFINITION

The physically rigorous definition together with the geometrically consistent rep­
resentation for material damage is applicable to both nonlocal and local damage theory
associated with all possible scale parameters. It also provides a mathematical model to
represent quantitatively the material damage caused by the metallurgical or synthetic
processes. In this circumstance, the identification of damage will, of course, refer to micro
material properties described by material science or solid state physics.

With respect to mechanics, the damage theory associated with the proposed definition
could be developed in purely physically or physical-phenomenologically consistent manners.
Based on the cardinal concepts and principles of quantum mechanics as well as the rate
theory of atomic activation, the physically rigorous damage kinetic equations have been
derived by Woo and Li (1993a). Referring to the multi-barrier model of the rate theory,
the general damage kinetic constitutive equation is represented by the spatial discrete
elementary damage kinetic equation

. - - (W+ W)D = (n/Ao)f(Lt, . N)(£# - £#) exp kT '

or physical continuous elementary damage kinetic equation

(19)

(20)

where Wdenotes external work contributed to the forward activation and if' to the
backward activation. The initial bond state Ao is a constant dependent on the reference
state ofdamage and f(L~ . N) dependent on the properties of the subsystem. The activation
constant £# for the forward activation is expressed as

(21)

and l# for the backward activation as

(22)

in which K is the transmission coefficient; h is Planck's constant; k is Boltzmann's constant;
T denotes the absolute temperature; and I1G # denotes the activated Gibbs free energy.
Obviously, the identification of damage is in relation with the activated energy I1G # which
can be measured through the physical and chemical methods. This is a physically rigorous
damage theory from which most damage processes in relation with complex controlling
mechanisms could be described [for details, see Woo and Li (1992a, 1993a)].

The fundamental characteristics ofmaterial damage exposed by the proposed definition
together with the concept of micro deformation lead to a rational synthesis for all energy
dissipative mechanisms into only controlled ones, known as generalized plasticity and
generalized damage [see Li and Woo (1993a)]. This enables a simple and distinct thermo­
dynamic framework for the formulation of nonlinear response with changing material
properties to be established (Li and Woo, 1993b). This is a physical and phenomenological
consistent material theory, in which the dissipative potential referring to damage is derived
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c

Fig. 3. Schematic illustration of the additional strain decomposition.

from the thermal activated damage kinetics established by Woo and Li (I 993a). Although
this proposed framework is a local damage theory referring to the zeroth longwave approxi­
mation, the phenomenological identification for damage can be carried out through the
physical and chemical methods in relation to rigorous physical parameters and activated
energy. The identification for damage from microcracks or microcavities is also possible by
virtue of the concept of the characteristic area of the atomic bond introduced in Section
2.1 and eleborated further in Li and Woo (1993a).

We are also trying to set up the relationship between the physical properties of material
damage and macro material parameters such as strength and stiffness of materials. We need
to establish the special constitutive equations for nonlinear material response. The direct
formulation for elasto-damage, plastic-damage and elasto-plastic-damage responses is poss­
ible by means of additional strain decomposition as shown in Fig. 3. If the unloading curve
CD could be assumed as a straight line, damage strain tensor I'd could be related to the
elastic modulus easily. However, it has been recognized, from both the theoretical and
experimental approaches, that the phenomenological identification of damage through
elastic modulus alone is insufficient. In other words, although the changing microstructures
referring to material damage could result in the change of elastic modulus, alteration of the
elastic modulus is only the consequence of partial damage. This conclusion is supported by
both experiment and theory in relation to a new physical definition for elastic response,
which is based on the cardinal concept of quantum statistical mechanics.

Furthermore, the probabilistic characteristics of material damage revealed by the pro­
posed definition of material damage lead to a physical-phenomenological-probabilistic
consistent material theory [see Li and Woo (1993c)]. The evol ution equations referring to
the stochastic energy dissipative processes are represented by a group of independent Ito
stochastic differential equations. The solutions of these equations for the stochastic internal
variables defined in the probabilistic subspaces correspond to the physical diffusion
processes. When the diffusion matrix H equals zero or the stochastic disturbances can be
ignored, the probabilistic formulation is degenerated to the deterministic one with all the
internal variables represented by the statistical mean values in which the noise-induced shift
could be included. As a special case, the general stochastic dynamic model of continuum
damage mechanics proposed by Woo and Li (1992b) falls into the proposed material theory.
The probabilistic formulation has been confirmed by the experimental investigation carried
out by Woo and Li (l993b).

8. CONCLUSIONS

For the purpose of developing a physically and geometrically consistent definition for
material damage, a physically-based model is proposed. The material damage is entirely
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dependent on the states of atomic bonds. The physical concepts for the definition are
adhering to and extending from the elementary concepts and principles of quantum and
statistical mechanics. The damage in conception has been enlarged to the phenomena not
only with the reduced material stiffness and strain-softening caused by nucleation, growth,
and coalescence ofmicrocracks and microcavities, but also any changes of the microstructures
in the solid. The proposed definition for material damage is applicable to most damage
theories referring to different scale parameters.

The geometrical consistency for the definition could be obtained through a scheme
based on a subsystem model, from which the configuration of the system of atomic bonds
will be reset by the configurations of the subsystems. Through the subsystem model, the
meso characteristic, such as the crystalline slip, twinning and loss of cohesion along the
grain boundaries or cleavage plane as well as microcracks and voids and so on, could be
described.
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